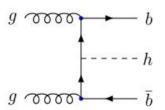


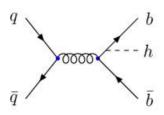
Searches for Non-SM Higgs Bosons at the Tevatron

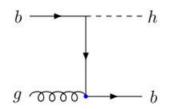
Makoto Tomoto (Fermilab)

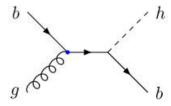
On behalf of the DØ & CDF Collaborations

Outline

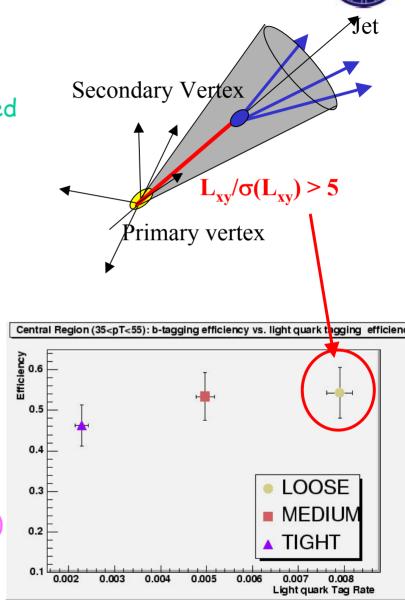

- SUSY Higgs Bosons
 - Search for $h(\rightarrow bb)bb (D\emptyset)$
 - Search for hX $\rightarrow \tau \tau X$ (CDF)
- Long-Lived Doubly Charged Higgs Bosons (CDF)



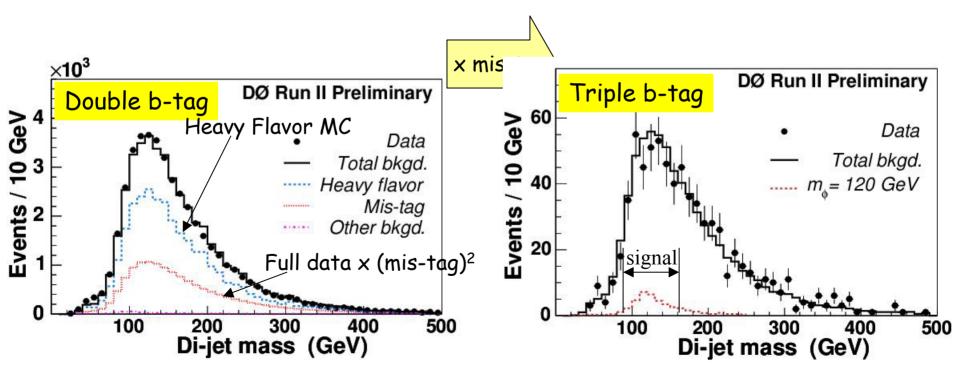

SUSY Higgs



- In two Higgs doublet model, such as MSSM
 - 5 physical Higgs bosons \rightarrow h, H, A, H⁺, H⁻ (m_h < m_H)
- $tan\beta = v_u/v_d$: ratio of vacuum expectation value of 2 Higgs
 - Cross sections for bbh enhanced like tan²β
 - Tevatron is sensitive to large $tan\beta$ and $m_A > \sim 90$ GeV
- h is predicted to be light $(m_h < \sim 135 \text{ GeV})$
 - LEP limit is m_h> ~92 GeV @ 95 C.L.
- At high tan β , A is almost degenerate with h/H
 - $\sigma(A) \sim \sigma(h/H)$, $\Gamma(A) \sim \Gamma(h/H)$
 - Br(A→bb) ~ Br(h/H→bb) ~ 90%
 - Another 10% is $Br(A/h/H \rightarrow \tau\tau)$
 - hbb(\rightarrow bbbb) and hX \rightarrow $\tau\tau$ X are the best channels to search for h/H/A

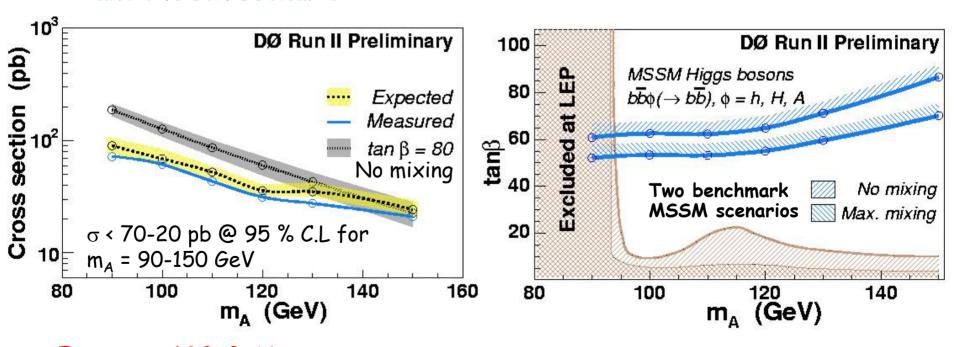


$h(\rightarrow bb)bb$ Search (DØ)


- L=260pb⁻¹
 - Trigger: at least 3 jets with E_→15GeV
- Selection
 - Offline selection on leading jets optimized for each Higgs mass
 - Secondary Vertex b-Tagging
 - Double b-tag and Triple b-tag
- Backgrounds
 - QCD fake: jjjj ... From Data
 - QCD heavy flavor:bbjj, ccjj, cccc, bbcc, bbbb... From Data
 - Other: Z(bb,cc), tt ... From MC
- Simulations
 - SM Higgs ... PYTHIA
 - σ and kinematics adjusted to NLO
 (P.R.L 94, 031902(2005) Dawson et.al)
 - Background
 - · PYTHIA, ALPGEN, MADGRAPH

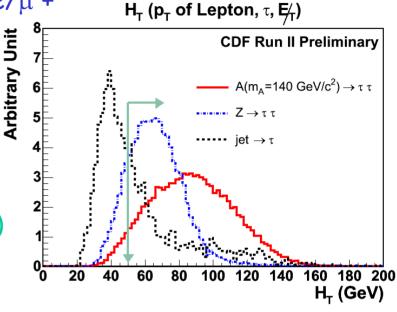
$h(\rightarrow bb)bb$ Search (DØ)

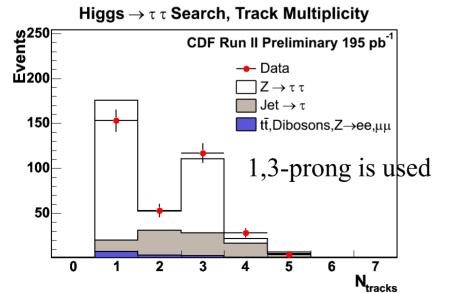
- "mis-tag" rate function from full samples (as a function of p_T and η)
 - ~2%
- (double b-tag data) x (mis-tag rate) = (triple b-tag backgrounds)
 - Shape of events with \geq 3 b-jets similar to double b-tag distribution
 - Their cross sections are very small
- Fitting triple b-tag dijet mass distribution outside the signal region

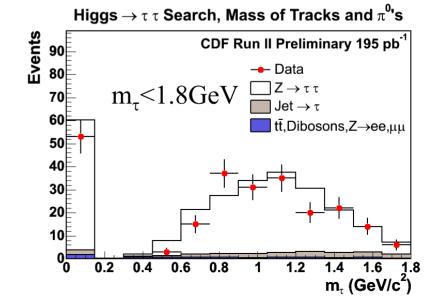


$h(\rightarrow bb)bb$ Search (DØ)

- No evidence and Set Limits on cross section & $tan\beta$ vs. m_A plane
 - Set limits on tan β vs. m_A in two of the "benchmark scenarios"
 - "No mixing" and "maximal mixing" in the stop sector
 max-mix: designed to maximize allowed parameter space
 - Exclude significant portion of $tan\beta$ down to 50, depending on m_A and MSSM scenario

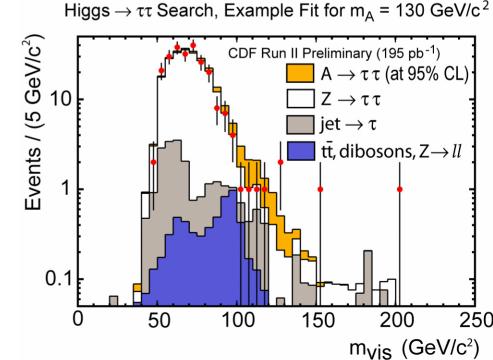

For $m_A = 120 \text{ GeV}$: $\sigma < 31 \text{ pb } @ 95\% \text{ C.L.}$, $\tan \beta < 55 @ 95\% \text{ C.L.}$ (Max Mixing)




$hX \rightarrow \tau \tau X (CDF)$

- 200pb⁻¹ sample collected by τ triggers (e/ μ + isolated track) = 8 F
 - $\tau_{e/\mu} \rightarrow e/\mu + \nu\nu$, $\tau_h \rightarrow hadrons + \nu$
- Selection
 - lepton pT, Z mass window cut
 - Isolation on the τ_h
 - Event Topology using \mathcal{E}_T , $p_T(\tau_l)$, $p_T(\tau_h)$
 - $H_T = |p_T(\tau_l)| + |p_T(\tau_h)| + \not\!\!E_T > 50 \text{ GeV}$
 - $\not E_T$, $p_T(\tau_l)$, $p_T(\tau_h)$ correlations

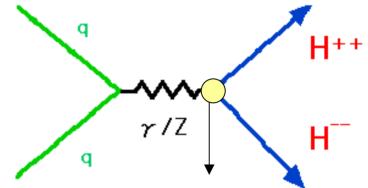
h→ττ (CDF)


- Limits on $\sigma x Br$ extracted from likelihood fits of $m(I, \tau_h, E_T)$
 - Signal Acceptance
 - · PYTHIA + TAUOLA
 - 115GeV < M_A < 200 GeV
 - Effi. ~ 0.8% $(\tau_e \tau_h)$, ~ 0.6% $(\tau_u \tau_h)$

MSSM Higgs $\rightarrow \tau\tau$ Search, final events

	$\tau_h \tau_e$	$\tau_h \tau_\mu$	Combined
$Z \rightarrow \tau \tau$	132.3 ± 17.1	104.1 ± 13.3	236.4 ± 29.5
$Z \rightarrow ll$	1.8 ± 0.2	4.9 ± 0.4	6.7 ± 0.6
$t\bar{t}, VV$	0.7 ± 0.1	0.8 ± 0.1	1.5 ± 0.1
$jet \rightarrow \tau$	12.0 ± 3.6	7.0 ± 2.1	19.0 ± 5.7
Total predicted	146.8 ± 17.5	116.8 ± 13.5	263.6 ± 30.1
Data	133	103	236

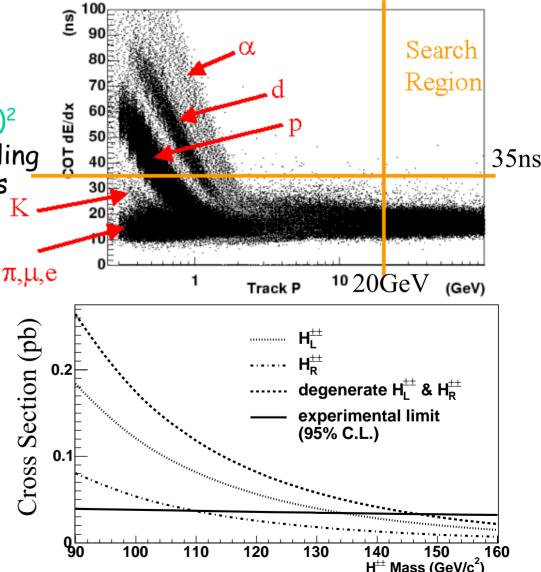
CDF Run II Preliminary



Doubly-Charged Higgs Boson

- Appeared in several extensions to the SM and can be relatively light
 - Left-Right Symmetric Model
 - Higgs Triplet
 - Little Higgs Model
- If short lived:
 - Invariant mass of like sign dilepton DØ (113pb⁻¹) m(H_L) > 118 GeV 95% C.L. CDF (240pb⁻¹) m(H_L) > 136 GeV 95% C.L.
- If long lived $(c\tau > 3m)$
 - Can be measured by two high ionization tracks DELPHI: $m(H^{\pm\pm}) > 99.6$ GeV @95% C.L.

Coupling depends on L/R Handedness


Long-lived H++/H-- Search (CDF)

- L~290pb⁻¹ collected by muon trigger
- pT(track) > 20 GeV
- dE/dx from drift chamber
 - dE/dx depends on (charge)²
 - →Signal modeled by quadrupling the dE/dx of cosmic muons (~4x15ns)
- No Evidence found
- Limits on cross section
 σ < 39.7- 32.6 fb @ 95%C.L.
 - for m(H^{±±})=90-160GeV
- Mass Limits

 $m(H_L^{\pm\pm}) > 133 \text{ GeV @ 95 C.L.}$ $m(H_R^{\pm\pm}) > 109 \text{ GeV @ 95 C.L.}$

m(H^{±±}) > 146 GeV @ 95 C.L.

Stable Doubly-Charged Higgs, COT dE/dx vs Track P

Summary

- CDF and DØ searched for several non-SM Higgs bosons based on data of L=200-300pb⁻¹
 - h(h→bb)bb from DØ
 - hX→ττX from CDF
 - Long-lived double charged Higgs from CDF
- No evidence of excess found
- Start excluding significant portion of parameter space
- · New channels and improved results will come
 - Twice more luminosity available